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Abstract
In this study, a quantitative assessment of observed aridity variations over the semiarid regions of India is performed for the
period 1951–2005 using a dimensionless ratio of annual precipitation (P) and potential evapotranspiration (PET), estimated from
five different observed gridded precipitation data sets. The climatological values and changes of this aridity index are found to be
sensitive to the choice of the precipitation observations. An assessment of P/PETestimated using the ensemble mean precipitation
shows an increase in aridity over several semiarid regions of India, despite the sensitivity of P/PET variations across individual
precipitation data sets. Our results indicate that precipitation variations over the semiarid regions of India are outpacing the
changes in potential evapotranspiration and, thereby, influencing aridity changes in a significant manner. Our results further
reveal a 10% expansion in the area of the semiarid regions during recent decades relative to previous decades, thus highlighting
the need for better adaptation strategies and mitigation planning for the semiarid regions in India. The sensitivity of aridity index
to multiple PET data sets can be an additional source of uncertainty and will be addressed in a future study.

1 Introduction

The ecosystems over the semiarid dry lands are highly dynam-
ic, fragile and are sensitive to the human-induced changes in
climate as well as land use transitions (Evans and Geerken
2004; Reynolds et al. 2007; Solomon et al. 2007; Rotenberg
and Yakir 2010; Reed et al. 2012). Globally, the semiarid dry
lands are characterised by low annual mean rainfall and strong
seasonal and interannual variations (D’Odorico et al. 2013).
Due to the limited availability of water resources, the popula-
tion over these regions mostly rely on rain-fed agriculture
(Schwinning et al. 2004). Thus, any slightest alterations in
temperature and rainfall patterns can have adverse impacts on
ecosystem services, including water yield over these regions,

putting at risk the livelihoods of millions. Thus, understanding
the climatic changes over the semiarid regions in the context of
a warming world is vital for a better management and policy
making which enables to adapt to climate change in a way that
minimises vulnerability and promotes long-term resilience.

Terrestrial aridity is widely used to indicate the degree of
dryness over a region. Terrestrial aridity is also a measure of
water availability for plants or the soil water content over a
region and, thus, considered to be a better climate indicator
particularly over dry regions from an ecohydrological per-
spective. One of such aridity indices which is most widely
used and recommended by the Food and Agriculture
Organization (FAO) is defined as the ratio of annual precipi-
tation (P) to annual potential evapotranspiration (PET)
(Middleton and Thomas 1997) and is used in many studies
(Feng and Fu 2013; Scheff and Frierson 2015; Lu et al. 2016;
Huang et al. 2016). For dry regions, annual P is less than
annual PET, and thus, the aridity index value is low, whereas
for a wet region, the annual P is more than PET, and hence, the
value of aridity index is high. Since the aridity measures the
balance betweenwater supply and atmospheric demand over a
region, the knowledge of how the terrestrial aridity changes in
a warming world is essential for water resource and land use
managements, especially over the semiarid dry land regions.

Many previous studies using various proxies to aridity
have indicated an increase in terrestrial aridity and dry areas
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at global and regional scales (Dai 2011; Sheffield et al.
2012; Liu et al. 2013; Cook et al. 2014; Sherwood and Fu
2014; Scheff and Frierson 2015 ; Moral et al. 2017), during
past few decades associated with warming temperatures.
Observational-based studies have also reported the increas-
ing trends in the semiarid regions world-wide (Feng and Fu
2013; Fu and Feng 2014; Gao et al. 2015; Huang et al.
2016), with little attention to the Indian region. The aridity
maps and analysis of changes in aridity for the Indian re-
gion are either based on a relatively shorter time period or
prepared only for few sub-regions of India like the Indo
Gangetic plains and use various climatic variables (Raju
et al. 2013; Behera et al. 2016; Matin and Behera 2017).
In this study, we focus on the regional changes in aridity
over the entire semiarid region of India.

Since precipitation is one of the major climatic parame-
ter in deciding the aridity over a region, the quality of pre-
cipitation data set plays an important role in terms of un-
derstanding the extant and scale of terrestrial aridity over
the region. However, for instance, over Indian region, mul-
tiple gridded precipitation data sets are available which are
constructed from varying data sources of different instru-
ments, quality control methodologies and algorithms. The
uncertainties among the multiple gridded observation pre-
cipitation data sets over the South Asian monsoon region
are well-documented in literature (Collins et al. 2013;
Prakash et al. 2014; Kim et al. 2015). This observational
uncertainty among the precipitation data sets gets trans-
ferred to uncertainties in the aridity index and varies when
computed using various rainfall data sets. Thus, it is very
important to examine the uncertainty arising in deciding the
aridity over a region with multiple precipitation data sets for
a reliable assessment. This study examines the sensitivity of
different gridded precipitation data sets to the identification
of the semiarid regions over India and makes reliable as-
sessment of the observed regional aridity changes, which is
important for decision-makers as a signalling mechanism to
think about adaptation planning over the semiarid regions
of India. Previous studies have noted that globally, the in-
crease in aridity is due to the fact that the rise in atmospheric
demand over land has outpaced the precipitation changes
(Berg et al. 2016 and the references therein). However, a
reduction in potential evapotranspiration is noted using ob-
servat ions over India dur ing the recent decades
(Padmakumari et al. 2013). In line with this view, in addi-
tion to identifying the changes in aridity using observa-
tions, we also investigate the relative role of precipitation
and potential evapotranspiration in the aridity changes over
the semiarid region of India. This paper is organised as
follows. Section 2 provides a description of the data sets
and the methodologies used for this work. Results from the
analysis of aridity changes are described in Section 3.
Finally, the conclusions are summarised in Section 4.

2 Data and methods

2.1 Precipitation data sets

Five different gridded precipitation data sets based on
rain-gauge measurements (Table 1) have been used to
examine the sensitivity of precipitation data sets for com-
puting aridity over the Indian region. The references for
the selected five data sets (APHRODITE, IMD, UDEL,
GPCC and CRU) are tabulated in Table 1. The spatial
resolution of these data sets range from 0.25° to 0.5°,
and the temporal resolution is either daily or monthly.
A common period of 55 years during 1951–2005 is se-
lected for the analysis. All the data sets have been re-
gridded onto a common 0.5 × 0.5 lat-lon grid for inter-
comparison (e.g. Kim et al. 2015). The analysis grid has
been selected to coincide with that of IMD land grid
points over India.

2.2 Potential evapotranspiration and 2-m air
temperature data

Monthly PET over land at 0.5° × 0.5° resolution available
from the Climatic Research Unit (CRU TS3.10; Harris et al.
2014) for the period 1951–2005 is used. Potential evapotrans-
piration is calculated from a variant of the Penman-Monteith
(PM) formula as recommended by FAO (http://www.fao.org/
docrep/x0490e/x0490e06.htm). The Penman-Monteith algo-
rithm is based on physical principles of energy balance over
a wet surface, and it is considered to be superior to empirically
based formulations, which usually consider the effects of tem-
perature and/or radiation only (Scheff and Frierson 2014;
Huang et al. 2016). Monthly surface air temperature (T2M)
data at 0.5° × 0.5° resolution from CRU is also used in this
study.

2.3 Aridity index and analysis methods

The terrestrial aridity of a region as represented by aridity
index (AI) indicates the degree of climatic dryness and is
defined in the literature as the ratio of annual mean P to the
annual mean PET (e.g. Holdridge 1967; Middleton and
Thomas 1997 ; Feng and Fu 2013 ; Sche f f and
Frierson 2015). This definition has been widely used and is
most recommended, particularly by the Food and Agriculture
Organization (FAO) (Fu and Feng 2014).

AI ¼ P=PET ð1Þ

The regions with different AI values are classified as
hyper-arid (AI < 0.05); arid (0.05 ≤ AI < 0.2); semiarid
(0.2 ≤ AI < 0.5); dry sub-humid (0.5 ≤ AI < 0.65) and
humid (AI ≥ 0.65).
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The sensitivity of AI to different precipitation data sets or
the uncertainty in determining the aridity of a region due to the
differences in observed precipitation data sets is estimated
using the signal-to-noise ratio (SNR) defined as

SNR ¼ M=σ ð2Þ
whereM is the ensemble mean AI frommultiple data sets, and
σ is the standard deviation calculated over all the data sets
included in the ensemble mean, i.e. σ is selected to represent
the inter-dataset spread. Whilst SNR is a relative measure of
the interdata spread, larger values of SNR indicate more con-
sistency among the data sets. There is no threshold SNR value
to define ‘good’ or ‘poor’ agreements between multiple data
sets (Kim et al. 2015).

The long-term changes are analysed by computing
linear trends, and the significance of the trends at 95%
confidence level are tested using two-tailed Student’s t
test (see Balling et al. 1998). The relative roles of P and
PET in the P/PET changes between two time periods are
estimated following the methodology given by Feng and
Fu (2013), using

Δ
P

PET

� �
¼ 1

PET
ΔP−

P
PET 2 Δ PET þ P

PET3 ΔPETð Þ2 ð3Þ

where the left-hand side of the equation denotes the chang-
es in aridity index, and the first term on the right-hand side
indicates the changes in AI caused due to the changes in P
(ΔP) whilst the second and the third terms on the right-
hand side are the contribution of PET changes to AI chang-
es. The changes in AI are computed for the time period
1986–2005 relative to 1951–1970.

3 Results and discussion

3.1 Annual climatology of precipitation
and uncertainty among different data sets

Figure 1 shows the spatial distribution of the annual climatol-
ogy of precipitation, the coefficient of variation (CV) based on

the ensemble mean (ENS) of different data sets tabulated in
Table 1 alongwith the SNR during the period 1951–2005. The
large-scale pattern of climatological annual mean precipitation
from ENS (Fig. 1a) displays rainfall maxima along the west
coast, foot hills of Himalayas, Northeast India and lower rain-
fall over dry north-western parts of India and rain-shadow
regions of South peninsula. These spatial features largely re-
semble the spatial distribution of summer monsoon seasonal
precipitation, being the major contributor to the annual pre-
cipitation. It can also be noted from the spatial map of the CV
of observed ensemble annual mean precipitation (Fig. 1b) that
the regions with the strongest interannual variability coincide
with either the lower rainfall regions or the driest desert re-
gions. This relation is clearly evident over the rainfall gradient
region (72.0–82.0 E; 27.0–29.0 N; box shown in Fig. 1a) that
the rainfall variability increases as mean annual precipitation
decreases (Fig. 1d). It indicates that the regions with lower
rainfall and larger interannual variability are more vulnerable
to climate change and need better water management plans for
agricultural and other human practices.

Many previous studies have shown that there is a con-
siderable spread among the different observed precipitation
data sets over India (Collins et al. 2013; Prakash et al.
2014; Kim et al. 2015). Since rainfall plays an important
role in deciding the terrestrial aridity of a region (see
Section 2.3 for the definition of aridity index), it is impor-
tant to consider this uncertainty in the data sets whilst de-
ciding the aridity of a region. The spread in the annual
mean precipitation climatology over India, as measured
by SNR, is shown in Fig. 1c. It indicates a good agreement
(high SNR values) among the data sets over northern and
central India regions whilst the spread is high (low SNR
values) over South peninsula. Fig. S1 further shows the
spatial distribution of the differences in the annual clima-
tology of precipitation of different data sets (Table 1) with
the ensemble mean (ENS) during the period 1951–2005.
The large-scale features of annual precipitation as
discussed above are qualitatively captured by all the data
sets (figure not shown) whilst quantitative differences in
the climatological annual precipitation between individual
data sets (Fig. S1a-e), and ENS show large variations. The

Table 1 The details of the
precipitation data sets used in this
study

Data set Resolution Reference

APHRODITE (Asian Precipitation – Highly-Resolved
Observational Data Integration Towards Evaluation
of water resources)

Daily, 0.5° × 0.5° Yatagai et al. 2012

IMD (India Meteorological Department) Daily, 0.25° × 0.25° Pai et al. 2014

UDEL (University of Delaware) Monthly, 0.5° × 0.5° Legates and Willmott 1990

GPCC (Global Precipitation Climatology Centre) Monthly, 0.5° × 0.5° Schneider et al. 2014

CRU (Climatic Research Unit) Monthly, 0.5° × 0.5° Harris et al. 2014
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geographical distribution of the bias in the annual mean
climatology with ENS for GPCC (Fig. S1b) and APHRO
(Fig. S1a) shows widespread positive and negative anom-
alies respectively whilst other data sets display regional
heterogeneities with both positive and negative anomalies
(Fig. S1c-e). The area averaged anomalies over the Indian
region with respect to ENS for the data sets APHRO,
GPCC, IMD, CRU and UDEL are − 0.32, 0.19, 0.08, −
0.08 and 0.14, respectively. The spread in the relation be-
tween annual mean precipitation and CV can also be seen
from Fig. 1d. Thus, from the above analysis, it is clear that
there exists considerable regional differences in the annual
mean precipitation climatology among different data sets
over the Indian region, and it can be expected that the
spread in these data sets can lead to uncertainty in deciding
the aridity of a region. Decision pertaining to aridity is
important because it provides a scientific basis for regional
and national governments to allocate scarce resources to-
wards managing the development of these regions, and

therefore, certainty pertaining to aridity measure is a criti-
cal input to the programmatic framework of the incumbent
government.

3.2 Annual climatology of temperature and PET

The spatial distribution of annual mean T2M and PET clima-
tology from CRU during 1951–2005 is shown in Fig. 2. The
long-term annual mean climatology of 2-m air temperature
shows lower temperature over northern and north-eastern
parts of India and higher magnitude over South peninsula
and north-western regions (Fig. 2a). The annual climatology
of PET (Fig. 2b) depicts a kind of west to east gradient with
higher values of above 5 mm d−1over the western parts of
India and rain-shadow regions of South peninsula along with
a gradual decrease in the PETwhen moving towards the north
and north-eastern parts of India. From the Figs. 1 and 2, it can
be noted that the regions with lower rainfall roughly coincide

Fig. 1 Spatial maps of a annual
mean precipitation, b coefficient
of variation (CV) based on the
ensemble mean and c signal-to-
noise ratio of annual mean pre-
cipitation using data sets men-
tioned in Table. 1 for the period
1951–2005. d The relation be-
tween CVand mean annual pre-
cipitation over the box region
shown in a for ensemble mean
(black dots) and multiple data sets
(various coloured dots)
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with the regions with relatively higher atmospheric demand
(i.e. PET).

3.3 Sensitivity of aridity to precipitation data sets

Figure 3 shows the spatial distribution of climatological ter-
restrial aridity for the period 1951–2005 as measured by P/
PET derived from the ensemble mean (ENS) of various pre-
cipitation data sets given in Table 1, along with the SNR. The
derived spatial distribution of AI from ENS (Fig. 3a) indicates
arid region (with 0.05 ≤ AI < 0.2) over north-western desert
regions surrounded by the semiarid region (0.2 ≤ AI < 0.5) in
the north-south orientation from northern India to South pen-
insula. The semiarid regions are margined by dry sub-humid
regions (0.5 ≤ AI < 0.65) on the eastern side. The spatial dis-
tribution also shows wet humid regions (AI ≥ 0.65) along
narrow Western Ghats, sub-regions of Indo Gangetic plains,
central India and north-eastern parts of the country. The qual-
itative distribution of different sub-categories of dry and wet
regions over India found in this study is similar to that

obtained in the previous studies (Feng and Fu 2013; Huang
et al. 2016). The areal extent of dry land sub-types of arid,
semiarid and dry sub-humid regions account for about 7, 34,
and 14%, respectively, whilst the humid regions cover about
45% of the Indian land region. It can be noticed that the dom-
inant dry land sub-type over India is semiarid region, with a
significant portion of the population living in these regions
and relying on rain-fed agriculture. The AI derived with indi-
vidual precipitation data sets also show similar large-scale
spatial patterns with variations in the areal extent of various
sub-types of dry regions among the data sets (Fig. S2). The
noticeable difference among the data sets is the areal extent of
the semiarid and dry sub-humid regions in South peninsula
and central India, with the area of the semiarid region ranging
from 30 to 39% among the data sets. The same is expressed
as signal-to-noise ratio among the data sets in deciding
the semiarid regions over India for the period 1951–
2005 in Fig. 3b. The SNR values are shown only for the
semiarid region, which is decided based on the ENS mean
AI values in Fig. 3a. It shows that the SNR is relatively high

Fig. 2 Spatial distribution of
annual climatology of a 2-m air
temperature (T2M; °C) and b po-
tential evapotranspiration (PET;
mm d−1) during the 55-year peri-
od 1951–2005 based on CRU
data set

Fig. 3 Spatial maps of a
ensemble mean annual aridity
index (AI) and b signal-to-noise
ratio (SNR) over the semiarid re-
gions during 1951–2005
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over the semiarid region over North India, whilst the SNR is
relatively low over South peninsular India. This indicates that
there is a good agreement (high SNR) among different data
sets in deciding the semiarid regions over northern regions
whilst there is considerable spread (low SNR) among the data
sets over South peninsular regions. For further analysis, we
considered the ENS mean AI in this study.

3.4 Long-term changes in precipitation, temperature,
PET and terrestrial aridity over the semiarid regions
of India

The geographical distribution of the long-term trends in annu-
al mean precipitation, T2M, PET and aridity for the semiarid
regions over India using ENS mean of various observed data
sets during the period 1951–2005 is shown in Fig.4. A signif-
icant drying in annual rainfall over large portion of the semi-
arid regions of India is noted in ENS (Fig. 4a) whilst wetting

trend is observed over the semiarid regions of south-east India
and over extreme northern regions. Several recent studies
have reported similar significant negative trends in the ob-
served seasonal monsoon precipitation, which is a major con-
tributor to the annual precipitation, at regional and sub-
regional scales over South Asia since the 1950s (e.g.
Guhathakurta and Rajeevan 2006; Chung and Ramanathan
2006; Bollasina et al. 2011; Krishnan et al. 2013, 2015;
Ramarao et al. 2015; and the references therein). The consen-
sus in the decreasing trends in rainfall among the data sets is
shown in Fig. S3. Striping indicates where at least four rainfall
data sets concur on an increase (vertical) or decrease
(horizontal) in linear trend. The spatial pattern of long-term
trend in observed T2M (Fig. 4b) shows significant warming
over the semiarid regions of India, except a small region dur-
ing 1951–2005. Similar increasing trends were previously re-
ported bymany studies over India (Kothawale et al. 2010; Jain
and Kumar 2012; and the references therein). The spatial

Fig. 4 Spatial distribution of linear trends in annual mean a ENS
precipitation (P; mm/d/decade), b 2-m air temperature (T2M; °C/decade),
c PET (mm/d/decade) and d ensemble mean AI (/decade) for the semiarid
regions during the 55-year period 1951–2005. Hatching indicates that the

trends at those grid points are significant at 95% confidence level accord-
ing to a two-tailed Student’s t test. Striping in d indicates that at least four
AI estimates concur on an increase (vertical) or decrease (horizontal) in
linear trend
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pattern of long-term trend in PET (Fig. 4c) shows an increase
over the semiarid regions of central and South peninsular
India whilst it decreases over other parts of the semiarid re-
gions of India. However, the linear trends in PET are not
significant at 5% level. The observed decreasing trend in at-
mospheric moisture demand over India has previously been
reported by Padmakumari et al. 2013. It is important to note
here that despite significant warming over the semiarid re-
gions, PETwhich indicates the atmospheric demand of water
vapour does not show significant trends. This is because the
PET over a region not only depends on temperature but also
on other factors such as net radiation, relative humidity and
wind speed. These long-term regional changes in precipitation
and PET associated with warming temperatures (Fig. 4a, c)
can lead to changes in AI over time and can also lead to
alterations in the areal extent of the semiarid regions. The
linear trends in AI from ENS in the semiarid regions (derived
from ENS mean AI) for the period 1951–2005 are shown
along with the consensus in the sign of trend among the data
sets in Fig. 4d. The trends in AI from individual data sets are
shown in Fig. S4. The ensemble mean AI indicates an increas-
ing trend in aridity (decrease in AI) over most of the SARs
(0.2 ≤AI < 0.5) except in Jammu andKashmir, a small portion
of Maharashtra and south-eastern region of the peninsular
India during 1951–2005. Striping indicates where at least four
AI estimates concur on an increase (vertical) or decrease
(horizontal) in linear trend. Thus, from Fig. 4, it is clear that
the increasing aridity over the semiarid regions is certain
among the data sets during this analysis period. It is also no-
ticed that the patterns of trend in precipitation are consistent
with those of AI, indicating the dominant role of precipitation.

Further, we investigated this issue by computing the annual
AI either by using a climatological PET (AI-ClimPET) or cli-
matological P (AI-ClimP) for the period 1951–2005. Whilst
keeping the climatological value of PET at each grid point,

the computation of AI-ClimPET retains the variations of pre-
cipitation only. Similarly, AI-ClimP indicates the changes in AI
due to the PET changes alone. The similarity in the spatial
patterns of trends in AI-ClimPET (Fig. 5a) and AI (Fig. 4d)
shows that the regions with increasing aridity are strongly dom-
inated by the drying trends in rainfall over the semiarid regions
of India. It can also be noticed that the increasing trend in

Fig. 5 Spatial distribution of linear trends in annual mean aridity index computed by using a climatological PET (AI-ClimPET) and b climatological
ENS precipitation (AI-ClimP) for the semiarid regions over India during 1951–2005. Linear trends are expressed as change over a decade (/decade)

Fig. 6 Spatial distribution of the estimated semiarid regions over India
between the periods 1951–1970 (grey) and 1986–2005 (red) shows an
expansion of the semiarid regions towards central India during the recent
period

On observed aridity changes over the semiarid regions of India in a warming climate



precipitation is outpacing the increasing trend in PET and is
leading to a decrease in aridity over eastern part of peninsular
India. This result suggests that precipitation is a dominant factor
that affects AI changes over the semiarid regions of India. The
examination of the temporal variations in the percent area of
SAR over India during the period 1951–2005 shows a long-
term trend in addition to the year to year fluctuations (figure not
shown). Thus, here, the changes in the semiarid regions (SARs)
over India during 1986–2005 relative to 1951–1970 periods are
analysed using the ensemblemean of the observed aridity index
(AI) estimates. Observations show an expansion in the bound-
aries of the semiarid regions (Fig. 6) during the recent 1986–
2005 period (35%) which is relatively 10% larger than that of
the 1951–1970 period (31%). The increase in SAR area is equal
to 4% of total Indian land area. From the figure, it can be noted
that the eastern boundaries of the semiarid regions in North
India have expanded converting the dry sub-humid regions into
semiarid regions. The method explained in Section 2.3 (Eq. 3)
is used to identify the relative contributions of P and PET in
causing the expansion of the semiarid region during the recent
period 1986–2005 relative to 1951–1970 and is shown with the
changes in AI with significance in Fig. 7. The region shown in
the figure corresponds to the semiarid region observed during
1986–2005 which also includes the newly expanded semiarid
region. The decrease in AI (increase in aridity) during the recent
period is clearly evident from the figure with significant chang-
es over the parts of the newly formed semiarid regions (Fig. 7a).
It is also clear that the contribution from a decrease (increase) in
P (Fig. 7b) leads to an increase (decrease) in aridity (i.e. a
decrease in AI) everywhere irrespective of the weaker contri-
bution of PET to changes in AI (Fig. 7c). Thus, it is clear from
the observations that the recent changes in aridity over Indian
region are largely driven by the changing patterns of precipita-
tion over India.

4 Conclusions

The effective wetness or dryness of climate over a land
region is determined by the terrestrial aridity of that region,
which is measured by the ratio of annual mean precipita-
tion to the annual mean potential evapotranspiration. The
changing regional precipitation patterns in association with
rising temperatures due to global warming can cause
changes in terrestrial aridity. Increases in aridity, along
with extensive land use practices leading to sever land
degradation, can amplify the near-surface climatic changes
and lead to further desertification over longer periods
(D’Odorico et al. 2013; Berg et al. 2016). Thus, quantifi-
cation of changes in terrestrial aridity is essential for plan-
ning and development of adaptation strategies for the semi-
arid dry regions. In this study, we have identified the semi-
arid regions of India and assessed long-term trends in arid-
ity during the period 1951–2005, by taking into consider-
ation uncertainties in the available precipitation data sets.
Given the inherent sensitivity of aridity index to precipita-
tion, we estimated the signal-to-noise ratio (SNR) for
quantifying uncertainty in aridity variations. The spread
among the data sets in quantifying aridity (as indicated
by low SNR values) is relatively high over South peninsula
than in the northern regions of India. By considering the
ensemble mean AI values, we identified that out of all sub-
types of dry lands in India, the areal extent of the semiarid
region is the largest, accounting for about 34% of total area
during the period 1951–2005. Further analysis indicates a
reduction in precipitation, and increase in PET over the
semiarid regions has led to an increase in the aridity over
most parts of the semiarid region of India with consensus
among the data sets. The present analysis identifies an ex-
pansion in the semiarid area during recent decades with a

Fig. 7 a The changes in AI for 1986–2005 relative to 1951–1970 from
ensemble mean of observations and contributions of b precipitation and c
PET to changes in AI. Grid points are stippled where the differences in AI

are significant at 95% confidence level using a two-tailed Student’s t test.
The regions shown are the semiarid regions identified for the period
1986–2005
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relatively 10% larger area than the corresponding area dur-
ing previous decades, and the newly formed semiarid re-
gion accounts to 4% of total Indian land area. This newly
formed semiarid region in the Northern India is found to be
transformed from the previously dry sub-humid and humid
parts leading to a drier climate over the region. It is also
found that the drying rainfall pattern has larger contribu-
tion to the increasing aridity and to the expansion of the
semiarid region in India during the recent decades. Several
recent studies have reported similar significant negative
trends in the observed seasonal monsoon precipitation,
which is a major contributor to the annual precipitation,
at regional and sub-regional scales over South Asia since
the 1950s (e.g. Guhathakurta and Rajeevan 2006; Chung
and Ramanathan 2006; Bollasina et al. 2011; Krishnan et
al. 2013, 2015; Ramarao et al. 2015; and the references
therein), and there is a growing evidence to the role of
increasing anthropogenic aerosol emissions in controlling
the declining precipitation trends over India (e.g. Chung
and Ramanathan 2006; Bollasina et al. 2011; Sanap et al.
2015; Krishnan et al. 2015). Even though, identifying the
cause of precipitation reduction over India is not the focus
of this study, it is important to know that the present-day
aerosols tend to increase aridity in India by suppressing the
precipitation (Lin et al. 2016).

It is to be noted that only one PET estimation available
from CRU is considered for the computation of aridity index
in the current study. However, in reality, the reliable PET
estimation is subjected to the uncertainty on account of many
existing formulae and different input data reliabilities
(Kingston et al. 2009; Sheffield et al. 2012; Trenberth et al.
2014). Thus, one can expect that the uncertainty in PET esti-
mations can be an additional source of ambiguity in the com-
putation of aridity index. Various PET method intercompari-
son studies confirm that physically based Penman-Monteith
(PM) method gives the most reliable estimation of PET in the
regions where sufficient meteorological data is available
(e.g.,Vörösmarty et al. 1998; Lu et al. 2005; Kingston et al.
2009). Hence, FAO recommended PM method as the single
standard method for computing PET. Thus, we used PM
method-based PET estimations available from CRU in this
study. Identifying the sensitivity of aridity index to the uncer-
tainty in PET estimation is not addressed here and will be
taken up as a future study.

Since aridity changes are primary indicators of desertifica-
tion from the climate perspective, any irreversible changes in
aridity persisting for several decades along with the land deg-
radation, loss of soil nutrients induced by human action can
lead to desertification over the dry regions. A multi-
disciplinary analysis approach is needed to better quantify
the effects of vegetation changes, land degradation, soil ero-
sion, shifts in ecosystems, desiccation of soils, etc. on desert-
ification and is beyond the scope of the present study.
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